Osnove veštačke inteligencije i mašinskog učenja

Osnove veštačke inteligencije i mašinskog učenja
Osnove veštačke inteligencije i mašinskog učenja
Osnove veštačke inteligencije i mašinskog učenja Naučićete: Razumevanje važnosti, principa i oblasti AI-e Implementiranje osnovnih koncepata veštačke inteligencije pomoću Pythona Primena koncepata regresije i klasifikacije u problemima iz stvarnog sveta Izvršavanje prediktivne analize upotrebom stabala odlučivanja i random foresta Izvršavanje klasterovanja ...
Vidi više
Osnove veštačke inteligencije i mašinskog učenja Naučićete: Razumevanje važnosti, principa i oblasti AI-e Implementiranje osnovnih koncepata veštačke inteligencije pomoću Pythona Primena koncepata regresije i klasifikacije u problemima iz stvarnog sveta Izvršavanje prediktivne analize upotrebom stabala odlučivanja i random foresta Izvršavanje klasterovanja
Nema ocena
Cena:
1.980 RSD
Na stanju
Osnove veštačke inteligencije i mašinskog učenja Naučićete: Razumevanje važnosti, principa i oblasti AI-e Implementiranje osnovnih koncepata veštačke inteligencije pomoću Pythona Primena koncepata regresije i klasifikacije u problemima iz stvarnog sveta Izvršavanje prediktivne analize upotrebom stabala odlučivanja i random foresta Izvršavanje klasterovanja pomoću k-means i mean shift algoritama Razumevanje osnova dubokog učenja pomoću praktičnih primera O knjizi Mašinsko učenje i neuronske mreže su stubovi na kojima možete da gradite inteligentne aplikacije. Knjigu „Osnove veštačke inteligencije i mašinskog učenja“ započinjemo predstavljanjem Pythona i opisom algoritama pretrage AI-e. Detaljno ćemo opisati matematičke teme, kao što su regresija i klasifikacija, ilustrovane Python primerima. Tokom čitanja ove knjige napredovaćete do naprednih AI tehnika i koncepata i koristićete stvarne skupove podataka za formiranje stabla odlučivanja i klastera. Predstavićemo neuronske mreže, moćnu alatku zasnovanu na Murovom zakonu. Kada završite čitanje ove knjige, moći ćete da gradite sopstvene AI aplikacije, koristeći novostečene veštine. Karakteristike Praktični primeri koji služe za objašnjavanje ključnih algoritama mašinskog učenja Detaljno istraživanje neuronskih mreža uz interesantne primere Učenje osnovnih AI koncepata angažovanjem aktivnosti Tabela sadržaja Poglavlje 1: Principi veštačke inteligencije Poglavlje 2: AI u tehnikama pretrage i igricama Poglavlje 3: Regresija Poglavlje 4: Klasifikacija Poglavlje 5: Upotreba stabala za prediktivnu analizu Poglavlje 6: Grupisanje Poglavlje 7: Duboko učenje sa neuronskim mrežama Dodatak
Osnove veštačke inteligencije i mašinskog učenja